

Tetrahedron Letters 44 (2003) 9321-9322

Vibsanin O, a novel diterpenoid from Viburnum awabuki

Chang-Yih Duh, a,* Ali A. H. El-Gamala,† and Shang-Kwei Wangb

^aDepartment of Marine Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC ^bDepartment of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC

Received 8 August 2003; revised 6 October 2003; accepted 10 October 2003

Abstract—Vibsanin O, isolated from the leaves and twigs of *Viburnum awabuki*, is an unprecedented bicyclic diterpenoid. The structures of vibsanin O was established by extensive analysis of spectroscopic data.

© 2003 Elsevier Ltd. All rights reserved.

The plants of genus *Viburnum* are rich in diterpenoids. ^{1–12} As part of our search for bioactive substances from marine and terrestrial organisms, the leaves and twigs of *Viburnum awabuki* K. Koch (Caplifoliaceae) were studied because MeOH extracts showed significant cytotoxicity to A549 (human lung adenocarcinoma), HT-29 (human colon adenocarcinoma), and P-388 (mouse lymphocytic leukemia) cell cultures as determined by standard procedures. ^{13,14} Bioassayguided fractionation resulted in the isolation of a novel cytotoxic diterpenoid, vibsanin O (1) (novel carbon skeleton).

Visanin O (1), obtained as amorphous solids $[\alpha]_D^{25} + 36^{\circ}$ (c 0.3, CHCl₃), has the molecular formula $C_{25}H_{34}O_7$ [MNa⁺, m/z 469.2183 (Δ -3 mmu)] established by HR-FAB-MS and ¹³C NMR data (Table 1), indicating 9 degrees of unsaturation. The IR spectrum of 1 shows absorptions due to hydroxyl (3440 cm⁻¹) and carbonyl (1755, 1730, 1715, and 1670 cm⁻¹) groups. The ¹H and ¹³C NMR data of 1 exhibited the presence of six tertiary methyl groups [$\delta_{\rm H}$ 0.84, 1.26, 1.27, 1.94, 2.07, and 2.20] (Table 1). In addition, the ¹³C and HSQC spectra indicated distinct resonances due to a conjugated ester carbonyl at $\delta_{\rm C}$ 163.3, a conjugated ketone at $\delta_{\rm C}$ 203.7, a conjugated carboxylic carbonyl at $\delta_{\rm C}$ 175.0, two trisubstituted olefins ($\delta_{\rm H}$ 6.57, $\delta_{\rm C}$ 132.7 and 135.4, and $\delta_{\rm H}$ 5.67, $\delta_{\rm C}$ 114.6 and 160.6), one disubstituted olefin ($\delta_{\rm H}$ 6.99, 4.94, $\delta_{\rm C}$ 137.1 and 113.1), three methylenes ($\delta_{\rm C}$ 35.7, 35.8, and 48.4), and two sp³ quaternary carbons including one oxygenated carbon $(\delta_{\rm C} 34.9, 77.5).$

Table 1. ¹H and ¹³C NMR data of 1 (300 and 75 MHz, respectively, in CDCl₃) (δ in ppm relative to TMS)

Pos.	$\delta_{ ext{H}}^{}}$	$\delta_{ m C}{}^{ m a}$
1	2.87m	31.6
2	6.57 d (2.4) ^b	132.7
3		135.4
4		203.7
5	3.33 m	43.7
6	2.70 dd (17.4, 4.5), 2.90 dd (17.4, 6.9)	48.4
7		204.7
8	6.99 d (12.3)	137.1
9	4.94 dd (12.3, 11.1)	113.1
10	3.71 t (11.1)	40.6
11		34.9
12	1.39 m, 2.05 m	35.8
13	1.09 m, 1.77 m	35.7
14	1.60 m	40.4
15		77.5
16	1.26 s	25.3
17	1.27 s	25.6
18		175.0
19	2.07 s	30.2
20	0.84 s	23.9
1'		163.3
2'	5.67 br s	114.6
3′		160.6
4′	2.20 s	20.6
5′	1.94 s	27.7

^a Assigned by DEPT, COSY, HSQC, and HMBC experiments.

Detailed analysis of the COSY and HSQC of 1 gave three partial structures (Fig. 1 in boldface). The double bond in the **b** part should take *E*-geometry due to the coupling constant (J=12.3 Hz). The presence of the partial structure **a** which corresponded to a β,β -dimethylacryl group was additionally supported by the observa-

Keywords: vibsanin O; Viburnum awabuki.

^{*} Corresponding author. Fax: 7 5252000 ext. 5036; e-mail: yihduh@mail.nsysu.edu.tw

[†] On leave from Faculty of Pharmacy, Mansoura University, Egypt.

^b Coupling constant in Hz in parentheses.

Figure 1. COSY and HMBC correlations of 1.

tion of the prominent fragment ion peak at m/z 83 in the MS.

The HMBC experiment was used to assemble the skeletal fragments through quaternary carbons and heteroatoms. Thus, these substructures were connected through HMBC correlations between the protons H-8 $(\delta_{\rm H}$ 6.99) and the carbons C-1' $(\delta_{\rm C}$ 163.3) and C-10 $(\delta_{\rm C}$ 40.6), between the protons H_3 -19 (δ_H 2.07) and the carbons C-7 ($\delta_{\rm C}$ 204.7), and C-6 ($\delta_{\rm C}$ 48.4), between the protons H₂-6 ($\delta_{\rm H}$ 2.70, 2.90) and the carbon C-4 ($\delta_{\rm C}$ 203.7), between the methyl protons H_3 -20 (δ_H 0.84) and carbons C-1 ($\delta_{\rm C}$ 31.6), C-10 ($\delta_{\rm C}$ 40.6), C-11 ($\delta_{\rm C}$ 34.9), and C-12 ($\delta_{\rm C}$ 35.8), between the protons H₃-16/17 ($\delta_{\rm H}$ 1.26, 1.27) and the carbons C-15 ($\delta_{\rm C}$ 77.5) and C-14 ($\delta_{\rm C}$ 40.4), and between the proton H-2 ($\delta_{\rm H}$ 6.57) and carbons C-3 ($\delta_{\rm C}$ 135.4), C-4 ($\delta_{\rm C}$ 203.7), and C-18 ($\delta_{\rm C}$ 175.0). These relationships are represented in Figure 1. All these data allowed us to identify compound 1 as a new diterpenoid with novel carbon skeleton.

With the gross structure of 1 in hand, the relative stereochemistry of compound 1 was deduced from NOESY correlations (Fig. 2), and by comparison of its spectroscopic data to those of vibsanin analogues. NOESY correlations from H-5 to H-9/H₃-20 and from H-9 to H₃-20 suggested that H-5, Me-20, and C-10 side chain are on the same face of the 7-membered ring. NOESY correlations from H₃-20 to H-5/H-12 β , H-1 to H-12 α /H-14 established the stereochemistry of the 5-membered ring. Vibsanin O (1) exhibited cytotoxicity against P-388 cell with ED₅₀ of 3.68 μ g/mL.

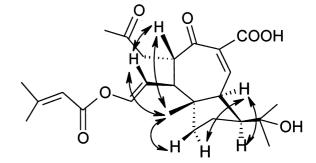


Figure 2. Selected NOESY correlations of 1.

Acknowledgements

We thank Professor J. M. Pezzuto, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, for providing P-388 cell line. This work was supported by grants from the National Science Council of Taiwan awarded to C.-Y.D.

References

- Fukuyama, Y.; Minami, H.; Takaoka, S.; Kodama, M.; Kawazu, K.; Nemoto, H. Tetrahedron Lett. 1997, 38, 1435–1438.
- Minami, H.; Anzaki, S.; Kubo, M.; Kodama, M.; Kawazu, K.; Fukuyama, Y. Chem. Pharm. Bull. 1998, 46, 1194–1198.
- Fukuyama, Y.; Minami, H.; Kagawa, M.; Kodama, M.; Kawazu, K. J. Nat. Prod. 1999, 337–339.
- Kubo, M.; Chen, I.-S.; Minami, H.; Fukuyama, Y. Chem. Pharm. Bull. 1999, 47, 295–296.
- 5. Kubo, M.; Chen, I.-S.; Fukuyama, Y. *Chem. Pharm. Bull.* **2001**, *49*, 242–245.
- 6. Fukuyama, Y.; Minami, H.; Matsuo, A.; Kitamura, K.; Akizuki, M.; Kubo, M.; Kodama, M. *Chem. Pharm. Bull.* **2002**, *50*, 368–371.
- Fukuyama, Y.; Minami, H.; Fujii, H.; Tajima, M. Phytochemistry 2002, 60, 765–768.
- Fukuyama, Y.; Kubo, M.; Fujii, T.; Matsuo, A.; Minoshima, Y.; Minami, H.; Morisaki, M. Tetrahedron 2002, 58, 10033–10042.
- 9. Fukuyama, Y.; Minami, H.; Takeuchi, K.; Kodama, M.; Kawazu, K. *Tetrahedron Lett.* **1996**, *37*, 6767–6770.
- Kubo, M.; Chen, I.-S.; Minami, H.; Fukuyama, Y. Chem. Pharm. Bull. 1999, 47, 295–296.
- 11. Kawazu, K. Agric. Biol. Chem. 1980, 44, 1367-1372.
- 12. Fukuyama, K.; Katsube, Y.; Kawazu, K. J. Chem. Soc., Perkin Trans. 2 1980, 1701–1703.
- 13. Geran, R. I.; Greenberg, N. H.; MacDonald, M. M.; Schumacher, A. M.; Abbott, B. J. *Cancer Chemother*. *Rep.* **1972**, *3*, 1–91.
- 14. Hou, R.-S.; Duh, C.-Y.; Chiang, M. Y.; Lin, C.-N. J. Nat. Prod. 1995, 58, 1126–1130.